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ABSTRACT
Objectives: A National Academies Consensus Study report concluded that the evidence did not support an assessment that flu-
oride is a neurodevelopmental hazard. However, some researchers have undertaken benchmark dose modelling to determine a 
safe fluoride concentration level in water. Therefore, the suitability of the data for modelling fluoride concentration in urine and 
water and cognition response using standard criteria was assessed.
Methods: Data quality was evaluated using a standard tool. A random-effects meta-analysis of standardised mean difference 
(SMD) and regression coefficients was conducted to assess effect sizes and heterogeneity. The Environmental Protection Agency 
(EPA) benchmark dose modelling was utilised to determine the association between fluoride concentrations and cognition scores.
Results: All four maternal urinary fluoride (MUF) studies did not meet the standards for acceptable quality, as identified by the 
EPA data quality criteria, which are necessary for combining data from different studies for dose–response analysis. The pooled 
estimate was not statistically significant (βMUF = −1.06, 95% CI: −3.63, 1.50; p = 0.42; I2 = 62%). A meta-analysis of five studies 
conducted in fluoridated areas showed a pooled SMD effect size of 0.04 (95% CI: −0.06, 0.14; p = 0.42; I2 = 0%), favoring higher 
fluoride. The benchmark dose models did not reveal a functional relationship between MUF or water fluoride concentration and 
cognitive outcomes (Goodness-of-fit p < 0.1).
Conclusions: The data quality assessment revealed serious flaws that render the maternal urinary studies unacceptable for 
hazard assessment and benchmark dose modelling. Therefore, more appropriate studies in endemic fluorosis areas are needed to 
accurately determine whether fluoride is associated with adverse cognitive outcomes in populations with meaningful exposure.

1   |   Introduction

A U.S. judge in the Northern District of California has instructed 
the United States Environmental Protection Agency (EPA) to 
take regulatory action to address the potential IQ deficit risks as-
sociated with water fluoridation [1]. The judge expressed that a 
benchmark analysis result indicating that 0.28 mg/L of fluoride 

in pregnant women's urine could decrease IQ by 1 point in their 
children was highly concerning.

To establish a safe level of fluoride (F) in drinking water for the 
United States, the EPA has set a lower limit of the Benchmark 
Dose (BMDL) at 1.87 mg/L F, often referred to as the Benchmark 
Concentration (BMC) and the Benchmark Concentration Lower 
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Limit (BMCL), using severe dental fluorosis as a clinical end-
point [2]. This is a concentration at which no more than 0.5% of 
exposed children in the susceptible age groups would develop 
any signs of severe dental fluorosis.

In 2021, a National Academies of Sciences, Engineering and 
Medicine Consensus Study (NASEM) report reviewed the 
National Toxicology Program (NTP) draft monograph on a sys-
tematic review of the association between fluoride exposure and 
neurodevelopment and cognition. NASEM concluded that the 
report fell short of providing a clear and convincing argument 
that supported the assessment that fluoride is a presumed neu-
rodevelopmental hazard [3]. As a result, the NTP removed the 
classification of fluoride as a ‘presumed neurodevelopmental 
hazard’ from its assessment [4].

Several meta-analyses and reviews have found that the avail-
able studies are at moderate to high risk of bias, which limits 
confidence in a hypothesized causal association [4–8]. Kumar 
et  al. [6] examined the relationship between fluoride concen-
tration in water or urine and cognition scores in non-endemic 
areas (< 1.5 mg/L F) using standardised mean difference meta-
analysis and restricted cubic spline regression analysis. Neither 
analysis demonstrated a relationship between fluoride con-
centration and cognition scores in non-endemic areas [6, 9]. 
However, another meta-analysis concluded that there is uncer-
tainty in the dose–response analysis when the fluoride exposure 
is below 1.5 mg/L F [10].

Grandjean et al. [11] conducted benchmark dose modelling to 
identify a safe fluoride level based on three secondary data 
cohort studies. The combined analysis revealed a BMC of 
0.47 mg/L urinary F (BMCL, 0.28 mg/L) for a 1-point change 
in IQ, indicating an adverse effect. However, instead of using 
the reported positive coefficient for the Odense Child Cohort 
(OCC) study (β = 0.08; 95% CI: −1.14, 1.30 or β = 0.18; 95% CI: 
−0.39, 1.76 for a doubling in exposure), the authors selected 
a negative coefficient (β = −0.94; p = 0.43) to determine if the 
merged datasets represent a homogeneous picture of a dose–
response for their BMC analysis. According to the authors, if 
the estimated concentration–response is increasing, the BMC 
is not defined [12]. The authors used summary regression 
coefficient data associated with maternal urinary fluoride 
(MUF) and the child's intelligence or cognition score from 
three cohort studies (OCC, Early Life Exposures in Mexico 
to Environmental Toxicants (ELEMENT) project, Mexico, 
and Maternal–Infant Research on Environmental Chemicals 
(MIREC) program, Canada) and omitted the INMA (INfancia 
y Medio Ambiente—Environment and Childhood) birth co-
hort study from Spain [11, 13–15].

The EPA has developed guidance, including a Benchmark 
Dose Response software for risk assessment [16]. The criteria 
for combining data from multiple studies for a BMD calcula-
tion state, ‘Datasets that are statistically and biologically com-
patible may be combined prior to dose-response modeling… If 
it is plausible that the multiple datasets represent a homoge-
neous picture of the dose-response (for example, the responses 
at doses common to two or more datasets are essentially the 
same and statistically undifferentiable), then this is a justifi-
able approach’.

Furthermore, the EPA has outlined principles to guide the se-
ries of steps and processes for incorporating systematic review 
approaches and methods into Toxic Substances Control Act 
(TSCA) risk evaluations, specifically evaluating data quality 
and its appropriateness [17]. Therefore, the aim of the study 
was to assess the suitability of available cohort studies for 
modelling fluoride concentration in urine and water in re-
lation to IQ response by examining the similarities between 
samples, average responses at similar concentrations, the 
homogeneity of effect sizes, and benchmark concentration 
model fit.

2   |   Methods

Six cohort studies were identified from the literature searches 
conducted by NTP. Data extraction results obtained by NTP are 
publicly available and downloadable (https://​hawcp​roject.​org/​
asses​sment/​​405/​). In addition, a 2024 study from.

Australia [18] was identified through PubMed, Mendeley, and 
Google Scholar. Two authors abstracted data from the eli-
gible studies using a standard form. The details of the data 
extraction procedures have been reported before [6]. For this 
analysis, all four studies that used MUF at the individual 
level as an exposure variable were selected as well as three 
additional cohort studies that used water fluoride concentra-
tion measured at the community level (Figure SA) [11, 13–15, 
18–21].

2.1   |   Data Quality Assessment

Two authors assessed the study quality using the method devel-
oped by the EPA [17] to determine if serious flaws would make 
epidemiological studies unacceptable for hazard assessment 
(Table SA).

2.2   |   Data Analysis

As raw data from these studies were unavailable, the summary 
data (mean IQ or cognition scores and regression coefficients 
associated with urinary F concentration) were used along with 
other relevant sample characteristics to determine if the results 
from four urinary F cohort studies and water fluoridation stud-
ies present a homogenous picture. A standard random-effects 
model meta-analysis approach was used to assess the heteroge-
neity of effect sizes derived from standardised mean scores and 
regression coefficients. The details of this meta-analysis method 
have been discussed before [6].

The US EPA BMDS Desktop was used to conduct a dose–re-
sponse analysis of continuous data using summary data (num-
ber of subjects, MUF concentration, mean IQ or cognition score, 
and standard deviation) [22]. One study did not provide mean IQ 
scores for lower and higher fluoride groups [11]. Therefore, 803 
data points (out of 837) were extracted from the published graph, 
using WebPlotDigitizer, a data extraction tool [23]. The mean IQ 
and MUF values derived from data extraction were similar to 
those in the published paper (mean IQ 98.9 [SD 12.8] vs. 99.44 
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[SD 12.34]) for the derived data and the published study, respec-
tively, and the mean MUF was 0.59 (SD 0.32; range 0.08–3.05, 
with a median of 0.52). The median MUF was the cutoff to cre-
ate lower and higher fluoride groups (Figure SB). In addition, 
the linear regression coefficient (β = 0.26, 95% CI: −2.02, 2.54) 
reported by Taylor et al. (NTP) was used for the OCC study [10].

The benchmark dose model assessed the statistical associa-
tion between maternal urinary and water fluoride concentra-
tions and mean cognition scores. The scatter diagrams were 
visually inspected. The linear model was compared directly 
with that selected by Grandjean et al. [11] Although the EPA 
recommends a one-standard-deviation (SD) change in the 
benchmark response for the BMC analysis, a 0.5 SD change 
was used to be conservative in this assessment to ensure a 
higher level of safety.

3   |   Results

3.1   |   Characteristics of the Sample

The sample characteristics varied substantially among the 
four maternal urinary fluoride studies (Table  1). The per-
centage with greater than high school education varied from 
a low of 10% in the ELEMENT cohorts to more than 76% in 
the MIREC and OCC cohorts. Similarly, smoking rates var-
ied markedly from 1% to 48%. The lowest MUF concentration 
groups exhibited a 10-point variation in their mean response 
scores, ranging from 98 at 0.37 MUF in the OCC cohort to 
108 at 0.4 MUF in the MIREC cohort. Although the MIREC 
and OCC cohorts had similar levels of education (> 68% with 
high school education), the mean response scores varied by 8 
points on the Wechsler Intelligence Scales at approximately 
0.5 mg/L MUF.

3.2   |   Data Quality Assessment

None of the four MUF studies met the standards for acceptable 
quality identified by the EPA data quality criteria (Table S1). The 
reported information indicates that the selection of study partic-
ipants and the analysis sample in the ELEMENT and MIREC 
studies do not represent the population, as they are based on a 
non-probability cluster sample. The measurement of fetal flu-
oride exposure using maternal spot urinary fluoride as a bio-
marker was based on less than three samples during pregnancy, 
and the adjustment for urinary fluoride dilution varied among 
the studies. On the other hand, the measurement of fluoride in 
drinking water for the five cohorts was based on multiple fluo-
ride measurements. It was classified as having high confidence 
in data quality. The outcome measurement varied substantially 
among the studies, and inter-examiner reliability data were not 
provided except for one ELEMENT subcohort out of their four 
cohorts. The data analytical strategy in the MIREC, ELEMENT, 
and OCC studies aligned more closely with a prediction model 
than a causal inference model, where covariate selection was 
driven more by estimating an exposure-outcome relation-
ship rather than overall consideration of parameters related to 
model fit.

3.3   |   Meta-Analysis

3.3.1   |   Maternal Urinary F and Regression 
Coefficient Analysis

Table 2 presents the meta-analysis of maternal urinary fluoride-
associated regression coefficients. It shows that the pooled effect 
size β decreased from −2.07 (95% CI: −3.61, −0.52; p = 0.009; 
I2 = 22%) as reported by Grandjean et al. [11] to a weaker and sta-
tistically not significant association (−1.78, 95% CI: −4.28, 0.73; 
p = 0.16; I2 = 61%) when the negative coefficient (−0.94) was re-
placed with the positive OCC coefficient (0.26). There was substan-
tial heterogeneity, indicating no common effect across studies and 
therefore undermining the validity of the synthesised estimate. 
In the leave-one-out analysis, a pooled effect size β ranged from 
−0.13 (95% CI: −2.51, 2.25; p = 0.92) to −1.78 (95% CI: −4.28, 0.73; 
p = 0.16), and the greatest difference in results was observed when 
excluding the salt fluoridation exposure study. This association ef-
fect of a −0.065 IQ point decrease (not statistically significant) for 
the 0.5 mg/L increase in MUF from non-fluoridated to fluoridated 
communities is negligible. Figure SC shows the details.

3.3.2   |   Water Fluoridation and Standardised Mean 
Difference Analysis

A standardised mean difference meta-analysis of five studies 
comparing fluoridated and non-fluoridated areas showed that 
the pooled SMD effect size of 0.04 (95% CI: −0.06, 0.14; p = 0.42), 
favouring higher F, was not statistically significant (Figure 1). 
Furthermore, no heterogeneity was observed (I2 = 0%; p = 0.84). 
When all seven studies were considered, the pooled estimate 
became marginally significant, favouring higher F exposure 
(SMD = 0.08, 95% CI: 0.00, 0.16; p = 0.05).

3.4   |   Benchmark Concentration Analysis

3.4.1   |   Maternal Urinary Fluoride and IQ/GCI Scores

All concentration-response models were either unusable or ques-
tionable (Figure 2). A visual inspection of the mean IQ/GCI sum-
mary data (Figure  SD) did not reveal a functional relationship 
between MUF and intelligence outcome in this exposure range 
(mean 0.37–1.01). At the lowest concentration of about 0.4 mg/L 
MUF, the difference in cognition scores between the OCC and 
MIREC studies was 10 points. The difference in mean IQ scores 
between the lowest exposed group from OCC (0.37 mg/L F) and 
the highest exposed group in ELEMENT (1.01 mg/L F) was not 
statistically significant (mean IQ difference −1.3; 95% CI: −3.9, 1.3; 
p = 0.34). A linear model (BMR = 0.5 STD) based on three stud-
ies showed a BMD of 19.9 mg/L F and a BMDL of 2.0. The Global 
Goodness-of-fit Test, which measures how the model-predicted 
dose-group response differs from the observed response, indicated 
a poor fit (p-value < 0.1). The scaled residuals > 2 suggested poor 
local fit. The addition of the ELEMENT cohort showed a lower 
BMD (3.1 mg/L) and BMDL (1.4 mg/L); however, it did not alter 
the interpretation of the results. All models were unusable when 
1 IQ point was used for BMR in a sensitivity analysis (Figure SD).
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3.4.2   |   Water Fluoride Concentration and IQ/GCI Scores

These concentration-response models were also unusable or 
questionable. A visual inspection of the mean IQ/GCI summary 
data (Figure 3) did not reveal a functional relationship between 
water F concentration and intelligence outcome in this exposure 
range (Figure SE). The model fit was poor (p-value for Goodness 
of Fit < 0.1).

4   |   Discussion

A review of seven studies conducted in six countries relevant 
to community water fluoridation revealed a wide variation 
in sample characteristics and cognition scores. Furthermore, 
there are substantial differences in sample selection, data 
collection, the sources of fluoride, and the method used for 
adjusting urine dilution. A meta-analysis showed that the 
pooled effect size of the association between MUF and cogni-
tion scores is not statistically significant. In addition, all water 
fluoridation studies consistently showed a positive effect, thus 
weakening the argument for selecting IQ as a clinical end-
point for assessing the potential risk posed by fluoride in this 
exposure range.

The maternal urinary studies for the concentration-response 
analysis did not meet the EPA guidance criteria for acceptable 
quality (Table  S1) and for combining the data from different 
studies. The analysis of water fluoridation concentration and 
cognition studies is consistent with the results of the maternal 
urinary fluoride studies. In both analyses, modeling the data 
to fit a concentration-response curve showed no functional re-
lationship. In addition, the data quality assessment showed se-
rious flaws that make these maternal urinary epidemiological 
studies unacceptable for hazard assessment. The MUF-IQ re-
sponse profile does not present a homogeneous picture of the 
concentration-response relationship. The results are not gen-
eralizable beyond these datasets. The BMC and BMCL cannot 
be reliably estimated because at least two studies employed 
non-probability cluster sampling without adjusting the stan-
dard error for the cluster design effect. For these reasons, a 
concentration-response analysis for calculating BMC and BMCL 
is not appropriate.

In contrast, the EPA based its current BMDL of 1.87 mg/L F on 
a dataset from a single U.S. study conducted by Dean [2, 24, 25]. 
This dataset was deemed sufficiently large and robust to support 
statistical analysis, and the researchers applied objective crite-
ria for severe dental fluorosis; the dichotomous Hill model ad-
equately fits the data (Figure SF). Spencer et al. have discussed 
the implications of this BMDL for determining the fluoride ref-
erence dose to achieve an optimal fluoride level for preventing 
tooth decay [25].

The present analysis differed from that of Grandjean et al. [11] in 
several ways. First, the sample mean IQ/GCI score and fluoride 
concentration summary data at the group level were used, rather 
than the regression coefficient summary data derived from spot 
urine samples. This approach is similar to that used by the EPA 
to establish the current BMD and BMDL for fluoride concen-
tration in water [2]. Due to the short half-life of fluoride (< 6 h) T
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FIGURE 1    |    Random effects analysis of standardised mean difference (SMD) and 95% CI of children's IQ score associated with exposure to higher 
fluoride. For each study, squares represent the point estimate, and the horizontal line shows the 95% CIs. Solid diamonds show the pooled estimate. 
The I2 and p values for heterogeneity and test for overall effect are shown.

FIGURE 2    |    Benchmark dose models for spot maternal urinary fluoride concentration and cognitive function outcomes.

FIGURE 3    |    Benchmark dose models for fluoride concentration in water and cognitive function outcomes from studies in fluoridated communities.
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and significant within and between variations in urinary flow 
and creatinine excretion rates, multiple, standardised individ-
ual spot or 24-h urine samples are necessary to produce an ac-
curate, precise, and reliable measure of long-term fetal fluoride 
exposure that can ensure the validity of study findings [26–29]. 
Furthermore, the EPA considers a single spot urine sample un-
acceptable for risk assessment [17]. However, the group-level 
fluoride exposure measure during pregnancy may be adequate 
for exploratory analysis. Weisskopf and Webster argued that a 
group-level measure may be preferable when valid measures are 
unavailable at the individual level [30]. Second, Grandjean et al. 
[11] used a coefficient of −0.94 for a 1 mg/L urinary F increase to 
demonstrate homogeneity in the dose response. This analysis is 
problematic when the description in their paper shows positive 
coefficients (log-transformed 0.08 or 0.18) for their study popu-
lation. Third, Grandjean et al. [11] excluded the INMA cohort 
without an explanation. All four studies have similar designs 
and similar limitations [6, 28]. Fourth, although an analysis 
using the adjusted regression coefficient may appear superior, 
the study authors' selection of variables was based on a predic-
tion model rather than a causal inference model. Not all studies 
used the same variables for statistical adjustments. Fifth, mix-
ing estimates derived from Generalised Estimating Equation 
(ELEMENT) and fixed effects models introduces model hetero-
geneity, which can distort the estimated BMC and BMCL val-
ues. Finally, a BMR of 0.5 STD was used as recommended by 
the EPA instead of a 1 IQ point change in response. The data 
structure did not allow the use of models with a 1 IQ point BMR. 
Considering the 10-point IQ difference between the OCC and 
MIREC lowest exposure groups, the limited number of studies, 
and the fact that the surrogate MUF exposure differs from blood 
lead measurement in quantifying lead-related IQ deficits, these 
findings do not support the selection of a 1 IQ point change in 
response [31].

For several reasons, the ELEMENT cohort should not be com-
bined with other studies to derive a concentration-response 
analysis. First, the EPA does not regulate the exposure source 
salt. Salt is also a potential confounder that Goodman et al. [13] 
did not address [32]. Second, the study authors have raised con-
cerns about the validity of spot MUF exposure as a long-term 
measure of fetal fluoride exposure in this study [13, 33]. Third, 
the subgroup differences are statistically significant, and the ef-
fect size is characterized by high heterogeneity. Finally, there 
may be systematic differences in reported and unreported re-
sults [34]. For example, while Thomas [34], in her unpublished 
thesis, found that concurrent urinary fluoride exposure showed 
a positive association with WASI scores (β = 1.32 per 1 mg/L F 
increase), Bashash et al. [21] reported a 0.89 lower IQ (95% CI: 
−2.63, 0.85) per 0.5 mg/L F increase.

5   |   Strengths and Limitations

While this analysis's strengths include using a meta-analysis to 
synthesize the effect sizes from all cohort studies and follow-
ing the EPA guidance, it also has several limitations. The cog-
nition scores in different studies are not directly comparable. 
The cognition assessment requires calibration that was not stan-
dardized across multiple studies. The data quality, the limited 
number of studies, non-probability sampling, unadjusted IQ 

scores, analysis based on secondary data, and the range of ex-
posure should be considered when applying the findings from 
these studies to inform the development of regulatory actions. 
Notwithstanding the limitations of the fluoride-IQ studies, the 
lack of association in the pooled SMD estimate and the pooled 
regression coefficient estimates associated with MUF studies, as 
well as the positive association in multivariate analysis in three 
water fluoridation studies, provide assurance of safety against 
any potential harm associated with fluoridated water [18–20].

6   |   Conclusion

The maternal urinary fluoride datasets did not show a homo-
geneous response, and the neurodevelopmental hazard has not 
been adequately demonstrated to warrant proceeding to the next 
steps of risk assessment. Recent studies from Sweden, China, 
Canada, Denmark and Australia have not shown deficits in cog-
nitive scores at low levels of fluoride exposure [12, 18, 20, 35–38]. 
The IQ scores did not improve after the cessation of water flu-
oridation in Calgary, whereas there was a detrimental effect on 
dental caries outcomes [39, 40]. The public can be reassured 
that the fluoride exposure range examined here, consistent with 
community water fluoridation, did not affect cognitive function. 
More appropriate studies in endemic fluorosis areas are needed 
to better understand if fluoride causes adverse cognitive out-
comes in that population.
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